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Abstract. Even if dark matter particles were unambiguously discovered in experiments, there is no clear
reason to expect that this would resolve the dark matter problem. It is very easy to provide examples of dark
matter scenarios (e.g. in supersymmetric models) in which nearly identical detector signals correspond to
extremely different relic densities. The density of the discovered particles, therefore, must be determined
before their cosmological relevance can be established. In this paper, I present a general method that
utilizes both dark matter and hadron collider experimental data (once they become available) to estimate
the local density of dark matter particles. These results were obtained in collaboration with Gordon Kane

at the University of Michigan.

1 Introduction

We are now confident that our universe contains a large
amount of cold dark matter. The most popular particle
candidates for dark matter are weakly interacting massive
particles (wimps). These particles are being searched for
directly and indirectly by dozens of experimental groups
throughout the world. If we are fortunate, wimps may
soon be discovered experimentally.

Although the discovery of wimps in the galactic halo
would have enormous implications for our understanding
of elementary particle physics, it would infact contribute
very little to our understanding of dark matter. It is un-
reasonable to expect that the particle discovered would
represent all dark matter. This issue was first raised tech-
nically, though not resolved, in [1]. Indeed, current (and
future) experiments readily provide examples of particles
that in fact constitute less than 1% of all dark matter.

Even if weakly interacting massive particles were pro-
duced at colliders, it would still be very important to di-
rectly determine their local density in the galactic halo.
This can only be done with experimental data.

In this paper, I describe how this can be determined
in the context of supersymmetry, in which the dark mat-
ter is the lightest supersymmetric particle (LSP). Similar
analyses could be done for any dark matter candidate.

I start out by illustrating why a discovery of dark mat-
ter particles in the halo would be insufficient for address-
ing the dark matter problem, and describing some of the
uncertainties in relating the local and relic densities of
dark matter. I then describe how dark matter is directly
detected in experiments and present the general form of
the interaction rate. This shows what is required for deter-
mining the local density of wimps. I present a very useful
method for improving on these expressions by using data

from different detector materials and at different recoil
energies.

In order to deduce the local density of wimps, it is es-
sential to know the wimp’s mass. I present two methods
for determining the mass of a wimp using direct detection
data alone. The first is based on a well known relationship,
and the second presents the preliminary results of the au-
thor. All of this work is then combined in the framework
of the most general minimally-supersymmetric standard
model, in which the neutralino is the wimp seen in dark
matter experiments. A general procedure is presented for
estimating the local density, and explicit bounds are given.

2 Discovering (some of?) the dark matter

Let us imagine that a weakly interacting massive particle
x has been unambiguously observed in direct detection
experiments. Such a discovery would represent an enor-
mous triumph for theoretical and experimental particle
cosmology; it would have deep implications for our under-
standing of the universe, it may herald the existence of
supersymmetry, and it would account for (at least) some
of the dark matter in the universe. However, a discovery
of dark matter particles is far from a solution to the dark
matter problem: there is no reason to suspect that x is all
the dark matter.

What fraction of dark matter is represented by x is a
question that cannot be answered by experiment or theory
alone. Furthermore, the answer will depend crucially on
dark matter detection experiments. The purpose of this
paper is to describe how this question may be answered.

It should be possible to determine the local density of
x using direct detection experiments. This is because, in



24 J.L. Bourjaily: Determining the actual local density of dark matter particles

a rough sense, they measure the local wimp density times
its scattering cross section. Unfortunately, there are very
few constraints on the scattering cross sections of most
wimp candidates.

However, it is not true that the signal rate depends
on the cross section and density independently, because
these are somewhat related. This is because the relic den-
sity {2, is related to thermal production and freeze-out in
the early universe. The rate of wimp-annihilation affects
the relic density and depends on the wimp annihilation
cross section, which is in turn somewhat related to the
scattering cross section by crossing.

As a result, there is less freedom in the observed signal
rate than one may have naively suspected. This can be
illustrated qualitatively as follows. If the cross section is
large, then most wimps annihilate in the early universe
and local density is small. Alternatively, if the cross section
is small, then thermal freeze-out occurs very early and
the density is higher. In either case, the cross section and
density tend to compensate each other.

The crude arguments above suggest that even a very
small component of dark matter may be detectable be-
cause it may have a higher cross section. This has been
referred to as the ‘no-lose theorem’ in recent conferences.
If even tiny fractions of dark matter may be detectable,
in other words, experimentalists cannot ‘lose’ on making
a discovery [2].

This is seen in many realistic dark matter scenarios.
In Fig. 1, we have plotted the relic density against the
direct detection signal for some six thousand randomly
generated, constrained minimally supersymmetric stan-
dard models (without assuming any specific supersymme-
try breaking scenario). By “constrained”, we mean that
all of the models are allowable under the current experi-
mental constraints on supersymmetry. These models were
generated and analyzed using the DarkSUSY code [3].

Notice that for any particular signal strength, the relic
density fluctuates over at least two orders of magnitude.

Direct Detection Signals and
Relic Densities of 6050 ¢cMSSMs
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Fig. 1. The relic densities of 6050 constrained MSSMs as a
function of direct detection signal strength in germanium. Ex-
periments currently in planning or under construction may be
able to observe signals of the order 10~* cpd/kg-keV

In accordance with the ‘no-lose theorem,” experiments in
the near future may detect even 1% of the dark matter or
less.

However, the no-lose theorem also implies, unfortu-
nately, that the discovery of wimps in the galactic halo
tells us very little about how much of the dark matter
they compose. A wimp discovery could easily represent a
negligible fraction of the dark matter.

Therefore, although wimps may be discovered in the
near future, the dark matter problem will not be addressed
until the density of wimps has been directly determined.

3 Local and relic densities

From studies of the cosmic microwave background, large
scale structure formation, and big bang nucleosynthesis,
we know the cosmic-scale relic density of cold dark matter
to be approximately 2cqmh? ~ 0.11 [4]. From our knowl-
edge of the rotation of the Milky Way galaxy, the local
dark matter halo density is known to be approximately
Pedm ~ 0.3 GeV/cm3 [5]. It is obvious that any dark mat-
ter experiment on Earth is only sensitive to the local den-
sity and not the relic density.

Unfortunately, the relationship between local and relic
densities involves many details of galaxy formation and
structure that are still not understood. Even if we were
able to demonstrate that x has a local density of precisely
0.3 GeV/cm3, there remain important subtleties about
our understanding of dark matter in the universe as a
whole.

Acknowledging these shortcomings, it nevertheless re-
mains extremely important to determine the local density
of any wimp discovered in direct detection experiments.
It would be very promising if the entire local dark matter
halo could be accounted for by wimps discovered in these
experiments.

Because direct detection experiments are sensitive to
small-scale structure in the local halo density, a knowledge
of the ambient halo density, peam ~ 0.3 GeV/cm? may not
be sufficient. Our knowledge of the local halo density is
based on large scale surveys of star velocities in the Milky
Way, and these measurements are not very sensitive to
small-scale structure in the halo.

There are several types of small-scale halo structure
that may affect direct detection experiments. For exam-
ple, the earth may be within a stream of dark matter.
This situation has been suggested in studies of the Sgr
A stream and it has been estimated that our local halo
density could be 0.3 — 23% higher than the ambient den-
sity [6]. Alternatively, some authors have proposed that
the halo may be clumpy or contain caustic structures [7].
These small-scale perturbations in dark matter density
could have significant effects on direct detection rates.

Most of the small-scale structure considered in the lit-
erature involves local, high-density regions of dark matter
within the halo. Although these structures may make it
easier to discover dark matter, they make it nearly impos-
sible to assess what fraction of the halo is composed of
X-
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Fortunately, there exist ways to check the smoothness
of the halo profile. For example, dark matter streams or
caustics may be identified or excluded using directional
dark matter experiments like DRIFT [8]. Also, it may be
possible to identify a clumpy dark matter halo by studying
the time-dependence of a wimp signal. These questions,
therefore, may find answers in the foreseeable future.

These ambiguities must be addressed before the dark
matter problem can be put to rest. For the purposes of
this paper, however, we assume that the halo is locally
smooth and that if py = peam = 0.3 GeV/cm?, then x
represents all of the dark matter.

4 Dark matter direct detection

Dark matter particles in the halo can be observed directly
through their interaction with ordinary matter!. Although
wimps interact only weakly, occasionally they will scatter
off matter in detectors, depositing a small amount of en-
ergy. Because wimps typically have masses on the order of
a hundred GeV and move relatively slowly in the halo (on
the order of a few hundred km/s) they typically deposit
recoil energies from ~ 1 — 200 keV. Using very sensitive
detectors, experiments can observe signals as low as a few
keV. Using sophisticated coincidence algorithms, most ex-
periments can remove virtually all background noise ex-
cept scattering from neutrons.

In essence, direct detection experiments measure the
x-nucleus scattering rate as a function of recoil energy
and time. In general, the signal rate is a function of the
cross section for y-nucleon scattering, the nuclear physics
describing the nuclei in a particular detector, and the local
velocity profile of the wimp fraction of the dark matter
halo.

4.1 Elastic scattering rate

It is helpful here to state the explicit form of the differen-
tial interaction rate for a particular detector at the recoil
energy ¢. Let the detector in question be composed of nu-
clei labeled with index j, each with mass fraction c;. Thus
the differential rate of wimp scattering at recoil energy ¢
is,

@ — 2pX ZC]/OO f(v’t)d’l)
dQ 0=q Ty . Ving (@) ¥
. {Ff<q>[zjfp (A - Z)fo]?

4 9 )
+m [alsjm (Q) + aOSju (Q)
+a1a0Sjo, ()] } ; (1)

where vnin; (¢) is the minimum velocity kinematically ca-
pable of depositing energy ¢ into the j*" nucleus, f(v,t)

! This was first proposed by Goodman and Witten in [12].

is the local velocity distribution function for the galac-
tic halo, FjQ(q) and S;, . (q) are nuclear form factors for
coherent and incoherent scattering, respectively, Z; and
Aj; are atomic and mass numbers, J; is the nuclear spin,
a1 = ap + ap, and ag = ap — ap, and the constant param-
eters fpn and ap, describe the coherent and incoherent
wimp-nucleon scattering cross sections, respectively?. For
a more detailed discussion of equation 1, please refer to
any modern review of dark matter (see, e.g., [5]).

It is important to note that (1) depends on several
unknown parameters: (1) the wimp’s mass, m,; (2) the
particle physics of x which determines the interaction pa-
rameters fp, , and ap »; (3) the velocity distribution of the
halo, f(v,t); (4) the local density of wimps, p, . These de-
tails will not be known when wimps are first discovered
and may take many years to resolve.

4.2 Prerequisites to determine p,

From the discussion above, it is clear that to determine
the density p,, one must first: (1) identify the particle x;
determine m,; estimate the halo profile; calculate the in-
teraction parameters from the theory describing x. Each
of these will require enormous efforts from both dark mat-
ter and collider physics experiments.

The most important and perhaps most difficult re-
quirement is the identification of y. This is not possible
through dark matter experiments alone. This is because
these experiments observe only a few of x’s quantum num-
bers. For example, it is unlikely that any amount of di-
rect detection data would enable us to differentiate be-
tween the lightest supersymmetric particle and the light-
est Kaluza-Klein particle; if possible at all, this would
probably require very precise data from several different
nuclei. Therefore, while direct detection experiments may
unequivocally discover dark matter wimps, they would not
be able to explain the dark matter itself.

Perhaps the most important parameter describing y is
its mass. This determines all of its kinematics and is cru-
cially linked to the local density. Fortunately, m, may be
calculable from direct detection experiments alone. The
known methods of calculating m, from dark matter ex-
periments are described below.

Because the mass may be observable, it may prove to
be the key to the identification of y. If a neutral, stable
particle is observed at colliders with the same mass as
that observed in dark matter experiments, then we might
suspect that they are the same particle. Although this
association is imprecise, it appears to be one of the best
methods of identification.

We should note, however, that determining the mass of
x may be very difficult at hadron colliders. For example,
if x is the LSP, it could take several years and an enor-
mous effort to determine m,, in a model-independent way.
Most of the known techniques for determining the mass
of the LSP rely on either the framework of mSUGRA or

2 Informally, coherent scattering is sometimes called ‘spin-
independent’ and incoherent scattering ‘spin-dependent.’
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specific assumptions about the relative masses of squarks
and sleptons. Therefore, it should be stressed that x may
not be identified until long after it is discovered.

Also, the halo profile must be known sufficiently well.
As described above, any small-scale structure in the halo
will dramatically alter the analysis of the local density. It
is imperative that these issues be sufficiently resolved.

Lastly, to compute the local density p,, one must
know the interaction parameters f,, and ap,. To com-
pute these parameters, one must know a great deal about
the theory describing x. It is clear that these parame-
ters cannot be obtained from direct detection data alone:
they depend on the many parameters of whichever ex-
tended standard model y is a part of. For example, if x
is the LSP, then these parameters will be functions of the
squark masses, mixing angles, gauge-content of the LSP,
and higgs parameters. It is extremely unlikely that all of
these will be known when x is discovered in direct detec-
tion experiments.

4.3 Combining data

All of the required analysis can be strengthened and em-
powered by combining data from different detectors over
a range of recoil energies. There are many important in-
sights and results that derive from the following frame-
work.

In general, the expression for the scattering rate (1) is
a second order polynomial in the four unknown interaction
parameters f, , and a, . To highlight this, it can be recast
in the suggestive form shown in (2) on top of the page.

It is clear from the expressions above that by using
data from

1. different detector materials (varying the mass frac-
tions, nuclear form factors, nuclear spins, and mini-

mum velocities),
2. different recoil energies (varying the nuclear form fac-

tors and minimum velocities),

one could invert (2) to solve for \/py fpn and \/pya, ., if
the halo velocity distribution and m, were known. Given
a halo model and the wimp mass, that is, the data from
different detector materials and different recoil energies
are sufficient for determining /py fpn and \/pya,, (up
to quadratic ambiguities).

We should mention that there are many important sit-
uations in which the above analysis can be simplified. For
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example, because a, , are already scaled by linearly in-
dependent combinations of the incoherent nuclear form
factors, ;... (¢), it is not necessary to use different detec-
tor materlals to solve for ,/pyap . However, this will only
work if there is data available from a detector with nuclei
that have non-zero spin, which is sufficiently sensitive to
incoherent scatteri ng.

Although knowing the scaled interaction parameters
will not directly determine the local density, it can give
enormous insight into the particle physics of . For ex-
ample, if x is the LSP, then the ratios a,/a, or a,/fn
could possibly lead to important insights on tan 3, the de-
generacy of the squark masses, mixing, and perhaps other
information as well. This could be very important for col-
lider physics and disentangling the MSSM.

5 Determining the Wimp mass

Of all the factors required to interpret the observed signal
rate, perhaps the most important is m,. Not only is the
mass required to compute the density, but it also plays a
critical role in the identification of y as described above.
Fortunately, it may be possible to determine m, from di-
rect detection experiments alone.

There are roughly two ways to determine m, from di-
rect detection data. One method, that using the annual
modulation crossing energy, was described in the dark
matter review article by Primack et. al. in 1988 [9]. Al-
though it seems unlikely to have originated in a review
article, we have been unable to find any previous work
mentioning this effect. The other method has been devel-
oped by the author in collaboration with Gordon Kane
and represents work still in preparation. Both of these
methods rely solely on the kinematics of the halo, although
neither are particularly sensitive to the precise halo model
3 (although, see caveats in [10]).

5.1 Annual modulation crossing energy

As the earth orbits the sun, its velocity through the galac-
tic dark matter halo varies between roughly 250 and 190

3 Specifically, these calculations are insensitive to which
isothermal halo model is assumed if the halo is in fact locally
isothermal. Any extra structure in the halo (e.g. streams, caus-
tics, etc.), however, can disturb these calculations significantly.



J.L. Bourjaily: Determining the actual local density of dark matter particles 27

The Difference Between Summer and Winter
Differential Wimp Interaction Rates
For Various Energy Bins

Direct Detection Signal for June - December (cpd/keV /kg)

10 125 150 175 200

Energy Bin (keV)

Fig. 2. The difference between direct detection signals in ger-
manium in June and December as a function of recoil energy.
This plot was generated for an MSSM with m, ~ 161 GeV

km/s [8]. This in turn results in annual modulation in the
scattering rate. However, the amplitude of this modula-
tion varies as a function of recoil energy and changes sign.
For a more detailed description, see, for example, [10].

In Fig. 2, we plot the difference between the scatter-
ing rates in June and December as a function of recoil
energy for several detector materials. Notice that there is
a particular energy, called the ‘crossing energy,” at which
no annual modulation is observed. As pointed out by Pri-
mack et al. [9], the crossing energy is an explicit function
of the masses of the wimp and detector nuclei that can
be derived easily from kinematics. Therefore, if crossing is
observed, one can determine the mass of the wimp explic-
itly.

This method is moderately robust. Specifically, if there
is an energy at which the annual modulation amplitude
changes sign, then one can confidently determine the wimp
mass to within approximately 10%. There are, however,
some important subtleties and caveats to this analysis as
described in, for example, [10]. These include the effects
of bin-sizes and small-scale halo structure. Furthermore,
if the wimp is very light, then the crossing energy may be
well below the threshold of the detector and therefore not
observed at all.

5.2 Kinematical consistency

Recall that if the halo velocity profile and m,, are known,
then direct detection data from different detector materi-
als and different energies can be used to solve for |/py fyn
and /pyap . If the halo velocity distribution is known,
then only the wimp mass is required to determine these.

Let us assume that the local halo velocity profile can
be adequately approximated and that there exists enough
data to solve for \/pyfpn and /pya,, as long as the
mass is known. (If, for example, there was enough data
to solve for ay p, it would be clear how to proceed along
similar lines). Because many direct detection experiments
observe scattering rates in a large number of recoil energy
bins, we can generally expect to have many more measure-
ments than the minimum required to solve the system of
equations.

Because the interaction parameters are absolute con-
stants, all minimal, linearly independent combination of
measurements used to solve for the scaled interaction pa-
rameters will agree as long as the correct mass is used in
the derivation. However, if an arbitrary m;( was used to
solve for these parameters, different calculations will tend
to disagree.

This motivates us to define a ‘kinematical consis-
tency’ function, ((m) ), which compares the values of
/Px fp.ns\/Pxapn obtained using different independent
subsets of the data as a function of the m; used. Specifi-
cally, let ¢(m}) be given by

¢(ml,) = Z M{(ap(i) — ap(4))” + similar terms} )

i#j

where the indices 4, j represent a minimal set of data used
to compute the constants given the particular m;(. It is
necessary that ((m}) = 0 when m) = m,, but this is not
a sufficient condition. Specifically, we have not found any
way to demonstrate that m, is the unique root of {(m ),
although we have found no example where it has multiple
roots.

To determine the wimp mass, one varies m;( until
¢(m) = 0. To test how useful this technique is, we applied
it to some six thousand random, constrained MSSMs. In
every single model tested, the correct mass was deter-
mined to near-arbitrary precision. Figure 3 illustrates a
typical plot of ((m/,). Notice that ( has an extremely sharp
minimum, decreasing many orders of magnitude within a
few GeV of the true mass of the LSP. It should be stressed,
however, that experimental uncertainties and resolutions
were not considered in these calculations.

Although this method appears quite promising, these
results should be considered preliminary. Several questions
remain regarding how robust this calculation would be
upon the introduction of experimental uncertainties and
halo model ambiguities. Without these uncertainties, the
algorithm yields the correct mass to seemingly arbitrary
precision. It will be interesting to see how this changes in
more realistic circumstances.

6 Bounds on the local density

Because m, can be determined, in principle, using the
methods described above and because we are working un-
der the assumption that the local halo velocity profile can
be adequately approximated, we can determine /py fpn
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Algorithm to Determine the Mass of the LSP
Given Direct Detection Rates
for both Nal and Ge Detectors

(model ATLAS_SUSY02)

1e-28 4

Consistency Berween Experiments at Specified LSP Mass

\gonthm's Scan
—— True LSP Mass

(810 12 114 116 118 120

Mass of the LSP used for Calculadon
Fig. 3. The function ¢((m} ), where the wimp corresponds to
the neutralino in the MSSM specified by ATLAS SUSY point
2 [11]. The models and data were generated within the frame-
work of the DarkSUSY package, [3]

and/or V/Px@p,n independently of the identification of x.
Therefore, to determine p,, it is sufficient to know any
one of the interaction parameters. This is an enormous
improvement over the general case, for which all of the
interaction parameters were required.

Therefore, any bounds on the interaction parameters
will translate into bounds on the local density. Unfortu-
nately, these parameters can only be computed in the
framework of a very explicit model for the wimp. Fur-
thermore, these parameters are typically very poorly con-
strained.

In order to address the question of the local density p,,
one must specialize on a particular candidate particle in a
specific extension of the standard model. In other words,
we cannot proceed further without losing some generality.

g2 2 1

7 Neutralino dark matter

The most popular and perhaps best-justified candidate
for cold dark matter is the lightest supersymmetric parti-
cle (LSP), as predicted by supersymmetric extensions of
the standard model that conserve R-parity. Indeed, the
existence of supersymmetric dark matter was predicted
before it was known that non-baryonic dark matter would
be needed. In most MSSMs allowed by experimental con-
straints, the LSP is the neutralino, y, which is the super-
symmetric partner of the neutral gauge and higgs bosons.
For an extensive and authoritative review of supersym-
metric dark matter, see Jungman et al. [5].

7.1 Interaction parameters

Given a completely specified supersymmetric standard
model, it is rather straightforward to calculate the inter-
action parameters. It should be noted, however, that one
does not compute f,, or ap, directly. Rather, x-quark
(an x-gluon) interaction parameters are calculated and
these are used to determine the x-nucleon parameters.

Even at tree level, it is clear that the y-quark interac-
tion parameters will depend on many of the parameters
in the model. Specifically, they are functions of the

1. gauge content of the lightest neutralino,

2. most of the squark masses and mixing angles,

3. tan (3, the ratio of the vacuum expectation value of the
two higgs bosons,

4. higgs mass parameters (only for the coherent interac-
tions).

It should be emphasized that most of these parameters
will be extraordinarily difficult to measure in practice (es-
pecially at hadron colliders). Currently, no general, model-
independent methods exist for determining most of these
parameters.

To illustrate the dependence on each of these parame-
ters (although we do not derive them here), the incoherent
scattering of x with a u-quark is given by (see equation
on bottom of the page).

In the expression above, the matrices Il g
are 3 X 6 projection matrices given in the basis
(@p,ér,tp, iR, ¢R,tr); O, is a unitary matrix which
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diagonalizes M2 so that M2 diag i M26, *; the
subscript j on ¢; corresponds to the flavor and handed-
ness of the quarks so that j 1,...,6 corresponds to
(@r,ér,tr, iR, ¢r,tr); and gauge content of y is given by
X = N3|B) + Ny |W) + Ng [H1) + Ng, |Ha). A similar
expression describes scattering with d, s-quarks.

The coherent parameters are similar to the incoherent
ones except that they also contain higgs exchange at tree-
level. This implies that in addition to squark masses, mix-
ing angles, tan 3, and the gauge content of y, one must also
know the higgs masses. Therefore, in general, less knowl-
edge of the MSSM is required to compute a, , than fp .

7.2 Limits on scattering parameters

As we have shown, the interaction parameters depend on
a very detailed knowledge of the MSSM. Unfortunately,
these may not be known until well after dark matter parti-
cles have been directly observed in experiments. We should
try to estimate them somehow using partial information
and any bounds on the MSSM that are available.

It should be clear that even if all of the squark masses
and mixing angles are unknown, we can still place limits
on the interaction parameters by using exclusion bounds.
In general, one can typically find a way to make use of
what is known and constrain what is not known in order
to estimate and limit the interaction parameters.

Beginning with almost none of the MSSM parameters
determined, we find that we can still place rather strong
limits on a,, ,,. For example, we have found that given only
upper and lower bounds on tan 3 and a lower bound on
the lightest squark mass, there is a strict upper bound for
the incoherent y-quark scattering parameters. If there is
a strict lower bound on the lightest squark mass, such as
mg,, and tan 3 is bounded so that sin 3 > sin 3, ®, then
there is a strict upper bound on ay ,. It should be men-
tioned that these types of bounds already exist today, at
least in the framework of particular supersymmetry break-
ing scenarios. In this case, it can be shown that the mag-
nitude of a,, is strictly bounded by (see equation on top
of the page), where « i1,» and agy, are the relative phases
between Ng , Ny, and N, respectively.

4 We have chosen the basis for the squark-mass matrices so
that M, is diagonal.

5 Both the upper and lower bounds of tan 8 are important
and it is not sufficient to have only a lower bound on sin 3. This
is because the nucleon scattering parameters ap,, will depend
on u- d- and s-quark scattering. In particular, a lower bound
on cos 3 is needed to place bounds on ag,s.

INw || N, | cos(eg,—ay)

29

2
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Rw— tan 0w |Ng||Ng, | cos(ag,) ¢

This expression has six real unknowns. Notice that
by the normalization of the neutralino wave function,
|Ns|2+| Ny |2+ Nz, |2+|Nﬁz|2 = 1, the parameter space
is compact. Therefore, a, can be absolutely maximized
with respect to all six unknowns. Specifically, although all
of the gauge content of the neutralino may be unknown,
one can limit the y-quark and hence the x-nucleon inter-
action parameters absolutely.

It should be emphasized that the analysis used to de-
rive the above bound was for the most general softly-
broken supersymmetric standard model; no ad hoc su-
persymmetry breaking scenarios such as mSUGRA were
assumed. It is obvious that if a particular supersymme-
try breaking scenario were assumed, the above expressions
would be enormously simplified. However, these types of
assumptions are very difficult to justify (theoretically or
experimentally) and therefore greatly limit the generality
of the work.

It is important to note the flexibility of the deriva-
tion involved in computing these bounds. If, for exam-
ple, the masses of several light squarks were known, one
could greatly improve the above bounds by including these
in the explicit expression for a, and then maximizing it
relative to the parameters that remain unknown. In this
manner, almost any additional knowledge can be incor-
porated to arrive at stronger statements. Therefore, not
only do these bounds grow more restrictive with increasing
knowledge of the MSSM, but they continue to approach a
realistic estimate of the interaction parameters.

7.3 Strong lower bound on p,

From the work above it is clear that, given adequate
bounds on tan 3 and a lower bound on the lightest squark
mass, there exist strong, model-independent upper bounds
on ap . These in turn can be used to place a very strong
lower bound on the neutralino relic density, because we
know /pyapn -

To test this method, we considered some six thousand
randomly generated MSSMs that are consistent with all
known bounds on supersymmetry. For each of these mod-
els, we calculated the interaction rates for a Nal detector
in twelve recoil energy bins. This (idealized) data was used
to compute the mass of the LSP — using the kinematical
consistency function — and to solve for ,/pya, . Upper
bounds were calculated for a,, ,, assuming 10% uncertainty
in tan 8 and a lower bound on the lowest squark mass of
either 200 GeV or the actual mass of the lightest squark,
whichever was less. For the sake of computational simplic-
ity, however, the specific gauge content of the neutralino
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Lower Bound and Estimate
of the Local Neutralino Density Using Nal Data
with Bounds on Lightest Squark Mass and tang
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Fig. 4. This plot compares the lower bound and estimate of
the local density computed using the strong upper bound for
ap,n to the true local density for each model. The red line in-
dicates perfect agreement. Notice that the procedure correctly
determined a lower bound for the local density for every model.

was taken to be known for each model®. Using the upper
bounds for a, ,, we obtained a lower bound on the local
density p,.

Figure 4 illustrates the results of this algorithm for
each of the randomly generated MSSMs. Notice that the
estimated local density is always strictly less than the true
local density—as required for a lower bound. Notice also
that for many models the lower bound was not such a
poor estimate. This will be the case, for example, when
the lightest squark mass is near or below the 200 GeV
bound.

8 Conclusions

We have seen that, by itself, a discovery of dark mat-
ter particles in our galactic halo cannot address directly
the dark matter problem of the universe. However, when
combined with data from colliders in order to identify the
particle and limit its interaction parameters, we can give
a general estimate of its local density.

6 If the gauge content of the neutralino was unknown, the in-
teraction parameters could have been maximized with respect
to these parameters as described earlier. In general, therefore,
the upper bounds obtained were more restrictive than they
would be in practice.

In the framework of supersymmetry, we have presented
a robust and iteratively improvable method for estimat-
ing, using any information available about the MSSM, the
local density of neutralino LSPs observed in direct detec-
tion experiments .

Thus we can conclude that even though the observa-
tion of wimps is unlikely to resolve the dark matter prob-
lem immediately, there do exist clear and general methods
for addressing their cosmological significance.
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